
Thomas Haschka

Matriculation No.: 0226291

under the Guidance of

Ao. Univ. Prof. Dipl-Ing. Dr. techn.
Helmut Leeb

Summersemester 2006

Student Project:

Numerical Methods of Nuclear Physics

Contents

1 Introduction 2

2 The Potential caused by Polarization 2

3 The Variable Phase Method 3

4 Numerical Integration using Runge Kutta 5

5 Numerical Evaluation of the spherical Bessel Function 6

6 Results 8

7 Notes on Accuracy 11

8 Program Useage 11

9 Runtime Estimation 11

10 Program Listing 15

1

1 Introduction

The problem to be solved by this student project, is to construct a program
that calculates the changes of the scattering phase shifts due to the long
range contribution of the potential generated by the polarizeability of the
neutron incident on a target nucleus.

We approach the problem by means of the Variable Phase method [4].
This method leads to a non linear differential equation for the phase shifts
which describes the change in scattering phase by a term whose size is pro-
portional to the potential. Hence, the method is best suited to evaluate the
changes due to small potential contributions. This equation is solved by an
adaptive step size Runge Kutta algorithm. Specifically for this program we
created a routine to calculate the spherical Bessel and Neumann functions.

The entire program has been written in Fortran 77 in order to achieve
compatability with other programs in this field, that may call the program
as a subroutine.

2 The Potential caused by Polarization

We start our consideration with a brief sketch of the derivation of the po-
tential contribution generated by the polarizeablility of the neutron. The
polarization of the incident particle is caused by the E-field of the nucleus.
At present we restrict our sketches to the contribution of the polarizeablity
generated by the Coulomb potential of the nucleus, while the corresponding
contribution of the electron shells are ignored. The scalar potential generated
by the charge of the nucleus is given by

ϕN(r) =
Ze0

4πε0

1

r
. (1)

Hence, the electric field strength takes the form

$E = − d

dr
(ϕN(r))r̂ =

Ze0

4πε0

1

r2
r̂. (2)

The electric field induces an electric dipole moment of the neutron

$D = 4πε0αn
$E, (3)

where αn is the electric polarizability of the neutron. The induced electric
dipole moment interacts with the electric field of the nucleus, thus leading

2

to the potential term

Vp(r) = −1

2
$D · $E = −1

2
4πε0αn

$E2

= −1

2
4πε0αn

(
Ze0

4πε0

)2 1

r4
. (4)

This term can be cast into the form

Vp(r) = −1

2
Z2αf h̄cαn

1

r4
, (5)

where αf is the dimensionless fine structure constant.

3 The Variable Phase Method

The effect of the long range part on the scattering phase shifts is best deter-
mined by the Variable Phase Method [4]. The potential due to the polariz-
ability vanishes as 1

r4 for r →∞, which is the only contribution outside the
nucleus for neutron- nucleus scattering. It should be remarked that the vari-
able phase method allows the evaluation of the wave function for the entire
range 0 < r < ∞. In this project we restrict ourselves to the evaluation of
the scattering phase shifts.

Lets briefly sketch the basics of the variable phase method. We start with
the radial Schrödinger equation

[

− h̄

2m

(
d2

dr2
− l(l + 1)

r2

)

+ V (r)

]

ψl(r) = Eψl(r), (6)

which can be written in the form:
[

d2

dr2
− l(l + 1)

r2
+ k2

(

1− V (r)

E

)]

ψ(r) = 0 (7)

It is straightforward to show that the logarithmic derivative

Z(r) =
d

dr
ln(ψ(r)) (8)

satisfies the Riccati equation

d

dr
Z(r) + Z2(r) + k2

(

1− V (r)

E
− l(l + 1)

k2r2

)

= 0. (9)

3

At first we solve the problem for the auxillary Potential V̄

V̄ (r, ρ) = V (r)θ(ρ− r) + Vc(r)θ(r − ρ), (10)

where Vc is the acting the Coloumb potential. Thus the wave function takes
the form:

ψ̄l(r, ρ) =

{
ψl(r) r ≤ ρ
αl(ρ) [cosδl(ρ)Fl(kr) + sinδl(ρ)Gl(kr)] r ≥ ρ

. (11)

Here, Fl and Gl are known to be the Coulomb functions of the first and second
kind. Their properties can be found in [1]. Inserting the wave function for
r ≥ ρ into (8) one obtains the expression

Z̄l(r, ρ) =





Zl(r) r ≤ ρ

k
cosδl(ρ)F ′

l (kr)+sinδl(ρ)G′
l(kr)

cosδl(ρ)Fl(kr)+sinδl(ρ)Gl(kr) r ≥ ρ
. (12)

The logarithmic derivative, Z̄ must satisfy the continuity condition. Thus
by reinserting Z̄ at r = ρ into (9) we obtain

d

dr

[

k
cos(δl(r))F ′

l (kr) + sin(δl(r))G′
l(kr)

cos(δl(r))Fl(kr) + sin(δl(r))Gl(kr)

]

+

+k2

[
cos(δl(r))F ′

l (kr) + sin(δl(r))G′
l(kr)

cos(δl(r))Fl(kr) + sin(δl(r))Gl(kr)

]2

+

+k2

[

1− V (r)

E
− l(l + 1)

k2r2

]

= 0. (13)

From this expression one gets by evaluating the derivatives explicitly,

k2 cos(δ)F ′′ + sin(δ)G′′

cos(δ)F + sin(δ)G
+

+k
dδ

dr

−sin2(δ)F ′G + cos2(δ)FG′ − cos2(δ)F ′G + sin2(δ)FG′

(cos(δ)F + sin(δ)G)2 +

+k2

[

1− V

E
− l(l + 1)

k2r2

]

= 0. (14)

Using the Schrödinger equation for the Coulomb potential and inserting (11)
into (7) yields

cos(δ)F ′′ + sin(δ)G′′

cos(δ)F + sin(δ)G
= −k2 +

l(l + 1)

r2
+

Vc

E
. (15)

4

With (15) and the identity G′F − F ′G = −1 we obtain from equation (14)
the differential equation for the phase shift.

dδ

dr
= −k

V (r)− Vc(r)

E
[cos(δl(r))Fl(kr) + sin(δl(r))Gl(kr)]2 . (16)

For neutron- nucleus scattering the corresponding differential equation is,

dδl

dr
= −k

Vp

E

[
cos(δl(r))ĵl(kr)− sin(δl(r))n̂l(kr)

]2
, (17)

where Vp is contributed due to the polarizability as defined in equation (5),
ĵl(x) and n̂l(x) are the spherical Bessel and Neumann functions in Ricatti
form which are known to be ĵl(x) = jl(x)

x and n̂l(x) = nl(x)
x . The solution to

our problem can now be found by integrating (17).

4 Numerical Integration using Runge Kutta

We use a Runge Kutta algorithm to solve the non-linear first order differential
equation associated with the Variable Phase Method (17). In particular we
use a fifth- with embedded fourth- order algorithm which includes variable
step size control as discribed by W. H. Press an S. A. Teukolsky [2]. The
fifth- order Runge Kutta formula with Cash Karp parameters (Table 1) is
given by

k1 = ∆xf(xn, yn),

k2 = ∆xf(xn + a2∆x, yn + b21k1),

· · ·
k6 = ∆xf(xn + a6∆x, yn + b61k1 + · · · + b65k5), (18)

yn+1 = yn + c1k1 + c2k2 + · · · + c6k6 + O(h6). (19)

The embedded fourth-order formula has the form

y∗n+1 = yn + c∗1k1 + c∗2k2 + · · · + c∗6k6 + O(h6). (20)

Thus one can estimate the error by

∆ = yn+1 − y∗n+1 =
6∑

i=1

(ci − c∗i)ki. (21)

The estimated error allows us either to accept the step size, or to truncate
the entire step if ∆ was to large. Because the estimated error scales with
(∆x)5 the stepsize for the next step is given by

∆xn+1 = ∆xn

∣∣∣∣
ε

∆

∣∣∣∣
1/5

, (22)

5

ai bij ci c∗i
37
378

2825
27648

1
5

1
5 0 0

3
10

3
40

9
40

250
621

18575
48384

3
5

3
10 − 9

10
6
5

125
594

13525
55296

1 −11
54

5
2 −70

27
35
27 0 227

14336
7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table 1: Cash Karp parameters for the embedded Runge Kutta method

where ε is the requested accurracy for the Runge Kutta algorithm. For
|ε/∆|0.2 < 0.8 we truncate the current step and decrease ∆xn to ∆xn+1 to
maintain a a requested accuracy.

5 Numerical Evaluation of the spherical Bessel
Function

It is very important for the solution that a very efficient algorithm is used
to evaluate the spherical Bessel functions of the first and second kind (also
known as spherical Neumann functions). This is particularly important since
these functions are called by every Runge Kutta iteration step. The imple-
mentation we used follows close to the one described by E. Gillman and H.
R. Fiebig [3]. One should note that other than [3] we are not evaluating the
spherical Bessel and Neumann functions for multiple l simultanuously. Our
program would not benefit from such a procedure as we have to calculate the
functions for multiple arguments of the same l.

To evalute the bessel function we use the recurrence relation.

gl−1(x) + gl+1(x) =
2l + 1

x
g(x) (23)

Which is satisfied for both kinds of the spherical Bessel functions. It is well
known that it is possible to calculate spherical Bessel function of the second
kind using forward recurrence, however this approach fails for the spherical
Bessel functions of the first kind, where backward recurrence has to be used.
To avoid underflow or overflow during the calculation of the spherical Bessel

6

function one has to split off the following factors,

jl(x) =
xl

(2l + 1)!!
ul(x), (24)

nl(x) = −(2l − 1)!!

xl+1
vl(x). (25)

Hence, the recurrence relations are reduced to those for ul and vl

ul−2(x) = ul−1(x)− x2

(2l − 1) (2l + 1)
ul(x), (26)

vl+1(x) = vl(x)− x2

(2l − 1) (2l + 1)
vl−1(x). (27)

To maintain an acceptable accurracy ε of the numerically evaluated spherical
Bessel function of the first kind a given minimum number L of steps have to
be recurred. According to [3] the number L of steps should satisfy

L ≥ 1

2

√
(x2ε1/3 + 9). (28)

The initial values for the downward recursion are chosen to be 0 and 1. After
the downward recursion the values of the functions must be renormalized.
This is done using the identity

jl(x)nl−1(x)− jl−1(x)nl(x) =
1

x2
. (29)

Which in terms of ul and vl becomes

ul−1(x)vl(x)− x2

(2l − 1) (2l + 1)
ul(x)vl−1 = 1. (30)

Thus the normalization factor a according to ūl(x) = aul(x) is given by

a = ū0(x)v1(x)− x2

3
ū1(x)v0(x), (31)

where ū0(x) and ū1(x) are the results of the downward recursion. v0(x) and
v1(x) are as is easily verfied by (25) given by

v0(x) = cos(x), (32)

v1(x) = cos(x) + xsin(x), (33)

which are the initial values for upward recurrence when evaluating the spher-
ical Neumann functions.

7

6 Results

So far we explained in great detail how we calculated the phase shifts. In
this section we present the results for the potential term (5) caused by the
neutron’s polarizability. In all calculations we considered a nucleus with
Z = 82 and the massnumber A = 208. Further we set the the neutron’s
polarizability to αn = 10−4fm3. The best value found in the literature [5] is
αn = (1.20 ± 0.35)10−3fm3.

In Figure 1 we present the radial dependence of the phase shifts δl(r) at
l = 0 and different energies E. To outline the dependence on the value of the
phase shift we show the function for two asymptotic values, i.e. δ(∞) = π

2
and δ(∞) = π.

For an improved visualisation of the dependence of δl(r) we generated
contour plots (Figure 2. and 3.). In these plots changes are displayed in
the range from r = 100fm to r = 10fm at different energies. The size of
changes are characterized by colours. Several contour plots show peculiar
lines. It turns out that these are artefacts related to limited accuracy of the
calculation. The lines vanish by improving the accuracy.

8

 1.49

 1.5

 1.51

 1.52

 1.53

 1.54

 1.55

 1.56

 1.57

 1.58

 10 20 30 40 50 60 70 80 90 100

p
h
a
s
e
 [
ra

d
]

radius [fm]

Phase Function at Different Energies

E=0.1
E=0.01

E=0.001
E=0.0001

 3.1382

 3.1384

 3.1386

 3.1388

 3.139

 3.1392

 3.1394

 3.1396

 3.1398

 3.14

 3.1402

 10 20 30 40 50 60 70 80 90 100

p
h
a
s
e
 [
ra

d
]

radius [fm]

Phase Function at Different Energies

E=0.1
E=0.01

E=0.001
E=0.0001

Figure 1: Phase function δ(r) for different energies. Shown here is the radial
dependence of the s-wave phase shift δ(r) at different asymptotic values δ(∞)
and energies E.

9

F
ig

u
re

2:
T

h
e

d
iff

er
en

ce
in

p
h
as

e
b
et

w
ee

n
10

0f
m

an
d

10
fm

fo
r

l
=

0
an

d
l
=

1
sc

at
te

ri
n
g.

In
th

e
tw

o
le

ft
p
lo

ts
lo

w
en

rg
ie

s
ar

e
ob

se
rv

ed
as

th
es

e
te

n
d

to
ge

n
er

at
e

h
ig

h
ch

an
ge

s
fo

r
δ(

r)
th

at
d
o

n
ot

fi
t

on
to

th
e

p
lo

ts
on

th
e

ri
gh

t
si

d
e

(w
h
it

e
ar

ea
s)

.
W

e
fu

rt
h
er

ob
se

rv
e

th
at

ch
an

ge
s

d
o

in
cr

ea
se

fo
r

h
ig

h
er

l
va

lu
es

.

10

7 Notes on Accuracy

The contour plots exhibit peculiar patterns of lines for evaluations performed
with limited accuracy accuracy ε (refer to equation (22)). The apperance of
these patterns seems to be quite chaotic. We further found out that the lines
disappear at an accuracy of ε = 10−8. To demonstrate the effect, we show in
Figure 4. contour plots for l = 0, one with ε = 10−8 and one with ε = 10−6.

8 Program Useage

As pointed out in the introduction we wrote the program in Fortran 77 to
gain maximum compatability with other programs in the field. The entire
algorithm has been embedded into a subroutine, so that it can be called from
a master program.

To call the subroutine one may use the following statement in his code:

call runge(begin,theend,init,initdelta,acc,l,Z,polarizeability,
+ E,mtarget,min)

The arguments and their formats are discribed in Table 2.
The program writes the values for the phase function to stdout which

may be redirected to a file from where one can plot the scattering phase.
The first value on each line from the output gives the r-value, the second the
phase value and the third represents the factor which is multiplied to the
current step size to correct the step size in the next step. The third value,
more or less meaningless for the result, is provided so that one can monitor
the adaptive step size control of the Runge Kutta algorithm.

For the generation of the contour plots the program has been slightly
modified. A patch file should be provided with the program so that one can
generate these plots.

9 Runtime Estimation

In the following we consider the runtime of the program, in order to provide
data for a reliable estimate of the required runtime. We further point out
that the estimations given, may not be accurate due to the size of parameters
that effect the runtime of todays computer systems. The only component
which we use for our estimation is the CPU-time, which probably is the most
important one for such an evaluation.

The system we used for our calculations is a PowerMac G5 featuring two
IBM PPC 970 CPUs clocked at 2GHZ. Our program utilises only one CPU

11

Figure 3: The difference in phase between 100fm and 10fm for l = 2 scatter-
ing.

12

Figure 4: The upper plot was created with an accuracy of ε = 10−8. The
lower plot with an accuracy of ε = 10−6.

13

Name Description Data Type Units
begin Radius to start from double precision fm
theend Radius where to stop double precision fm
init Scattering phase at begin double precision radian
initdelta Initial step size† double precision fm
acc Required Accuracy†† double precision
l Angular Momentum integer
Z Charge of the nucleus integer e+

polarizeability Polarizeability of the Neutron double precision fm3

E Energy double precision MeV
mtarget Mass of the nucleus double precision AMU
min Mass of the neutron doubel precision AMU

Table 2: Arguments of the subroutine that calls our program. † has to be
negative; †† refere to equation (21) and (22) to understand how this value is
used

during runtime. The operating system installed is Mac OS X 10.4.7. We com-
piled our program with g77, part of gcc 3.4, with the following optimisation
flags,

-O3 -falign-loops=16 -falign-jumps=16 -falign-functions=16
-ffast-math -mtune=970 -mcpu=970 -mpowerpc-gfxopt
-pipe -fomit-frame-pointer

To measure the runtime we consider the evaluations for the contour plots.
A resolution of 1000x1000 pixels was chosen for the contour plots. Thus to
evaluate one contour plot the computer has to evalutate the phase function
106 times. For l = 0 scattering with an accuracy of ε = 10−8 this took us
about 45 minutes. For l = 1 scattering at the same accuracy it took us about
15 hours and 15 minutes. We were not able to evaluate l = 2 scattering at
this accuracy.

As one can see the computational effort for solving the phase function
increases dramatically for higher l. This is caused by two things. First
according to (28) the computational effort to evaluate the spherical Bessel
function increases. Secondly the difference in phase is higher and thus the
absolute value of the first derivative (17) is higher, which causes the step size
control in the Runge Kutta algorithm to reduce the stepsize dramatically
resulting in more steps to be evaluated.

The average time for one evaluation of the phase function is given by
t0 = 0.0027sec for l = 0 and by t1 = 0.055sec for l = 1 at an accuracy of
ε = 10−8. Thus one may estimate the time to solve a problem consisting of

14

n evaluations of the phase functions on a machine close to ours by,

t = tin. (34)

We remark that different energies and masses may affect the effective runtime.
Both influence the derivative of the phase shift dδ

dr and thus the value of the
chosen step size.

10 Program Listing

The listing of the main program is presented in this section. The program
has to be compiled with or linked together with the object files of the codes
evaluating the spherical Bessel and Neumann functions. The codes for the
spherical Bessel and Neumann functions are also listed.

c Subroutine that solves the differential equation for the
c phase function using an adaptive stepsize runge kutta algorithm.

subroutine runge(beginvalue,endvalue,initialvalue,initialdelta,
+ accuracy,l,Z,polarizeability,E,mtarget,min)

double precision r,endvalue,beginvalue,initialvalue,initialdelta,
+ delta,k(6),errorest,phase,accuracy,check,newphase,
+ polarizeability,E,mtarget,min,mreduced,kmom

integer l,Z

r=beginvalue
phase=initialvalue
delta=initialdelta

c The reduced mass is given by
mreduced=(mtarget*min)/(mtarget+min)

c k is given by k=sqrt(2*mreduced*c**2*E/(hbar**2*c**2))
kmom=dsqrt((2*mreduced*931.49*E)/(32041.))

c Begin of Runge Kutta Iteration Loop

c In case you want to iterate outwards (not inwards as we do)
c the following line to
c10 if (r.lt.endvalue) then

15

c initialdelta has to be positive for this

10 if (r.gt.endvalue) then

k(1) = delta*newphase(r,phase,l,Z,polarizeability,kmom,E)
k(2) = delta*newphase(r+0.2*delta,phase+0.2*k(1),l,

+ Z,polarizeability,kmom,E)
k(3) = delta*newphase(r+0.3*delta,phase+0.075*k(1)+

+ 0.225*k(2),l,Z,polarizeability,kmom,E)
k(4) = delta*newphase(r+0.6*delta,phase+0.3*k(1)-0.9*k(2)+

+ .2*k(3),l,Z,polarizeability,kmom,E)
k(5) = delta*newphase(r+delta,phase-11./54.*k(1)+1.5*k(2)+

+ -70./27.*k(3)+15./27.*k(4),l,Z,polarizeability,kmom,E)
k(6) = delta*newphase(r+0.875*delta,phase+1631./55296.*k(1)+

+ 175./512.*k(2)+575./13824.*k(3)+44275./110529.*k(4)+
+ 235./4096.*k(5),l,Z,polarizeability,kmom,E)

errorest = (37./378.-2825./27648.)*k(1)+
+ (250./621.-18575./48384.)*k(2)+
+ (125./594.-13525./55296.)*k(3)-
+ 227./14336.*k(4)+
+ (512./1771.-1./4.)*k(5)

c Stepsize adaption
check = dabs(accuracy/errorest)
delta = delta*(check**0.2)

c Check whether the steps accuracy condition is met
if (check.gt.0.8) then

phase = phase+37./378.*k(1)+250./621.*k(2)+125./594.*k(3)+
+ 512./1771.*k(6)

write(*,*) r, phase, check**0.2
r=r+delta

endif

goto 10

endif

end

16

c The function to be integrated
double precision function newphase(r,phase,l,Z,polarizeability,
+ kmom,E)
double precision r,phase,sphneumann,sphbessel, polarizeability,
+ kmom,E,kmomr
integer l,Z
kmomr = r*kmom

c In our units (hbar*alphaf*c)/2 = 1.4379
newphase = -(Z**2.)*polarizeability*1.4379*1./(r**4.)*(-kmom/E)*
+ (dcos(phase)*sphbessel(kmomr,l)*kmomr-
+ dsin(phase)*sphneumann(kmomr,l)*kmomr)**2.

return
end

The code for the spherical Bessel function:

c
c Fortran Function to evaluate the spherical bessel function
c
c with spilt off of ill behaved factors as described by E.Gillman H.R.
c Fiebig

double precision function sphbessel(r,l)

double precision j(3),testa,testb,r,unnormalizedvalue,
+ normalizationfactor

integer l,k,precision,lu,doublefact

c where (10E-7)**(-1/3) is approx 215.4435 thus
c the precision is given by epsilon 10**-6 at least

precision=dint(0.5*((r**2.*215.4435+9.)**0.5)+1.)

k=l+1

j(3)=0
j(2)=1

if(k.eq.1) then

17

sphbessel=dsin(r)/r
return

else

do i=1,k+precision

lu=k+precision-i+2
j(1)=j(2)-(r**2.)/(4.*lu**2.-1.)*j(3)

if (lu.ne.2) then
j(3)=j(2)
j(2)=j(1)

endif

if(k+precision-i+1.eq.k) then
unnormalizedvalue=j(1)

endif

enddo

doublefact=1
do i=1,2*l+1,2

doublefact=doublefact*i
enddo

testa=dcos(r)
testb=dcos(r)+dsin(r)*r
normalizationfactor=j(1)*testb-(r**2.)/3.*j(2)*testa
sphbessel=(r**l)/doublefact*

+ unnormalizedvalue/normalizationfactor
return

endif

end

The code the spherical Neumann function:

C Spherical Neumann functions
C Calculated using forward reccurrence

18

C Splitting off ill behaved factors according to E. Gillman, H. Fiebig

double precision function sphneumann(r,l)

double precision n(3),r
integer l,k

k=l+1

n(1) = dcos(r)
n(2) = dsin(r)*r+dcos(r)

if (k.gt.2) then

c Beginn of recursion loop

do i=3,k
n(3)=n(2)-(r**2)/(4.*(i-2)**2-1)*n(1)
n(2)=n(3)
n(1)=n(2)

enddo
else

if(k.eq.2) then
n(3)=n(2)

else
n(3)=n(1)

endif
endif

doublefact=1
do i=1,2*l-1,2

doublefact=doublefact*i
enddo

sphneumann=-n(3)*doublefact/(r**(l+1))

return
end

Patch to generate contour plots (only prints out the last value from Runge
Kutta iteration). The program has to be embedded into a loop running

19

through different energy and asymptotic phase values δ(∞) in order to gen-
erate plots like those shown in this document.

*** variablephase.f Thu Jul 20 21:06:51 2006
--- variablephase-loop.f Thu Jul 20 21:06:49 2006

*** 59,72 ****

phase = phase+37./378.*k(1)+250./621.*k(2)+125./594.*k(3)+
+ 512./1771.*k(6)

! write(*,*) r, phase, check**0.2
r=r+delta

endif

goto 10

endif
!

end

c The function to be integrated
--- 59,72 ----

phase = phase+37./378.*k(1)+250./621.*k(2)+125./594.*k(3)+
+ 512./1771.*k(6)

!
r=r+delta

endif

goto 10

endif
! write (*,*) initialvalue , E, phase, dabs(initialvalue-phase)

end

c The function to be integrated

20

References

[1] M. Abramowitz, A. Stegun: Handbook of Mathematical Functions
(Dover Publications, New York, 1974).

[2] W. H. Press and S. A. Teukolsky: Adaptive Stepsize Runge-Kutta In-
tegration, Computers in Physics, 2, 188 (1992).

[3] E. Gillman, H.R. Fiebig: Accurate recursive generation of spherical
Bessel functions for a large range of indices, Computers in Physics, 1,
62 (1988).

[4] F. Calogero: Variable Phase Approach to Potential Scattering (Aca-
demic Press, New York and London, 1967).

[5] J. Schmiedmayer, P. Riehs, J. A. Harvey, N. W. Hill: Measurement of
the Electric Polarizablity of the Neutron, Phys. Rev. Lett. 66, 8, (1991).

21

